If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2-40k=0
a = 4; b = -40; c = 0;
Δ = b2-4ac
Δ = -402-4·4·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40}{2*4}=\frac{0}{8} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40}{2*4}=\frac{80}{8} =10 $
| -9=-3(m-17) | | 6x+6=6(6)+6 | | K+3k-2=18 | | 7n-4=20 | | 28+25x=180 | | 6h−h+3h−5h+h=4 | | 4m+15=3m | | 6h-h+3h−5h+h=4 | | 4n-3n=9 | | 4n−3n=9 | | 1/2(4-3x)=(4x+6)+10 | | 8s-1=6s- | | 25x–27=12(x+1) | | 2(x+3)=+-4(2x-1)+2 | | 24x+72=540 | | 15y*30=50 | | 15x(30)=50 | | 3/4(2x-6)=1/2(-3x-9) | | 10x-3=-103 | | x+11+3x+20=6x+15 | | 17-2p=2p+4+2p | | t=(t-4)(t+8) | | -55x+0.73=-1.47 | | 3x+20+x+11=6x+15 | | 8x-69=x-14 | | 10x-4=-7x-14 | | v/2+4=-1 | | 9+50=3x-22 | | y=1500(.074)^5 | | 4(4w+5)/3=-3 | | 7x=-(x=2)+10 | | 2=-4+x/3 |